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Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardi-
ness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facili-
tated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes 
with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 
ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding 
genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. 
Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. 
Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating 
random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers 
new knowledge and resources to accelerate sugarcane improvement.
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Cultivated sugarcanes (Saccharum spp., Poaceae) are unusual 
among leading crops in that they are polyploid interspecific 
hybrids, with singularly complex genomes. Domesticated in 

New Guinea ~10,000 years ago, ‘reeds that produce honey without 
bees’ were considered a luxury and an expensive spice from the 
sixth to fourth centuries bc. After the introduction of sugarcane to 
the Old World around the eighth century1, its spread to Caribbean, 
South American, Indian Ocean and Pacific island nations drove 
large human migrations, including slave labor2. Now the world’s 
number one crop by harvested tonnage and its fifth most valuable 
crop (FAO, 2012), sugarcane is cultivated on ~26 million hectares of 
land in >​90 countries, and 1.83 billion metric tonnes are harvested 
annually with a gross production value approaching $57 billion, 
providing 80% of the world’s sugar and 40% of its ethanol as the 
primary sugar and biofuel feedstock crop.

While the high sugar content of modern sugarcane cultivars 
derives from cultivated ‘noble’ forms of Saccharum officinarum, 
their hardiness, disease resistance and ratooning capacity were 
obtained during ‘nobilization’, specifically backcrossing into S. offi-
cinarum selected traits from a sugar-poor relative, Saccharum spon-
taneum3. ‘Noble’ S. officinarum cultivars, typically 2n =​ 8x =​ 80 (n 
is the haploid chromosome number in eukaryotic organisms and 
x is the monoploid chromosome number in polyploid organisms), 
accumulate sucrose in the stem reaching up to 50% of the dry weight 
but are vulnerable to biotic and abiotic stresses. Dutch breeders in 
Java made interspecific crosses between S. officinarum and a wild 
relative, S. spontaneum, to obtain disease resistance and stress toler-
ance traits of S. spontaneum while backcrossing to S. officinarum to 
recover high biomass and high sugar content4. Consequently, mod-
ern sugarcane cultivars are interspecific hybrids with approximately 
80% chromosomes from S. officinarum, 10–15% chromosomes 
from S. spontaneum, and 5–10% recombinant chromosomes5.

The lowest chromosome number recorded for natural Saccharum 
accession is a 2n =​ 5x =​ 40 S. spontaneum that no longer exists; how-
ever, exactly one haploid (1n =​ 4x =​ 32) S. spontaneum, AP85-441, gen-
erated from a culture of octoploid SES2086, provides a foundation for 
assembly of a prototypical version of the sugarcane chromosome set. 
This study illuminates the hereditary blueprint and evolutionary his-
tory of one of our most important, and most complex, crop genomes.

Results
Genome sequencing and assembly. The genome size of AP85-441 
was estimated at 3.36 Gbp by flow cytometry7. From a BAC library of 
AP85-441, 35,156 BAC clones were pooled into 712 libraries (mostly 
of 48 BACs; Supplementary Table 1), and individual BAC pools were 
sequenced independently by a Hiseq 2500 with PE250 (paired-end 
model and 250-bp read length), yielding 267.5 Gbp of data that 
were assembled using three different assemblers: ALLPATHS-LG8, 
SPAdes9 and SOAPdenovo210, yielding a 2.56-Gbp assembly with 
contig N50 of 7.4 kb (Supplementary Tables 2 and 3). To reduce frag-
mentation, 295 Gbp of data from the Pacific Biosciences (PacBio) RS 
II system (Supplementary Table 4) were used for self-correction and 
assembly by Canu11, incorporating assembled BAC sequences and 
correcting and polishing with 90×​ Illumina paired-end sequences, 
yielding 3.13 Gbp with contig N50 of 45 kb (Supplementary Table 5).  
The hybrid assembled contigs and BAC contigs correspond with 
~99.72% accuracy (Supplementary Table 6).

High-throughput chromatin conformation capture (Hi-C) is an 
extension of chromosome conformation capture (3C) technology, in 
which cross-linked chromatin is digested with an appropriate restric-
tion enzyme and then ligated to obtain an interacting fragment12. 
This approach, which was pioneered by Lieberman-Aiden et al.13  
and Burton et al.14, was used previously in grasses in the assem-
blies of barley15 and wild emmer wheat16. To provide a scaffold for 
contig assembly, four Hi-C libraries were constructed from young 
leaves of AP85-441. Chimeric fragments representing the original 

cross-linked long-distance physical interactions were processed 
into paired-end sequencing libraries, then 1 billion 150-bp paired-
end Illumina reads were produced and uniquely mapped onto the 
draft assembly contigs. Due to polyploidy, existing Hi-C scaffold-
ing programs such as LACHESIS14 and SALSA17 link S. spontaneum 
allelic haplotypes together and are no longer suitable for this auto-
polyploid genome. We developed a Hi-C-based scaffolding algo-
rithm (ALLHIC) that integrates four functions—pruning, partition, 
optimization and building—to select contigs specific for polyploid 
genome assembly (see Online Methods and Supplementary Figs. 1–3).  
The quality of Hi-C sequencing was evaluated using HiC-Pro18 
(Supplementary Table 7 and Supplementary Fig. 4).

A Hi-C-based physical map was used to assemble 32 pseudo-
chromosomes that anchor 2.9 Gbp of the genome, including 97% of 
the gene content. A high-density genetic map of 998,370 SNPs was 
used to verify the Hi-C assembly, supporting that the two methods 
are consistent in both chromosomal assignment and order for 89% 
of contigs (Supplementary Table 8). The 32 pseudo-chromosomes 
comprise 8 homologous groups with 4 sets of monoploid chromo-
somes: A, B, C and D (Fig. 1). A total of 219 (88.3 %) complete gene 
models among 248 ultraconserved core eukaryotic genes (CEGs) 
in CEGMA19 and 1,397 (97.01 %) among 1,440 conserved genes in 
BUSCO20 were recalled in our assembly (Supplementary Tables 9 
and 10). Further, 1,624 million (97.01%) of 1,674 million Illumina 
short reads were alignable and covered 97.3% of the assembly 
(Supplementary Table 11). The assembly allowed us to predict 28 
potential centromeric regions along the 32 chromosomes, with 
length ranging from 0.25 to 11.85 Mbp (Supplementary Table 12).

Allele-specific annotation. A high level of homologous gene reten-
tion was detected from sequencing multiple haplotypes in sugar-
cane, despite extreme autopolyploid redundancy21. In autopolyploid 
genomes, homologous genes at the same locus on homologous 
chromosomes are defined as alleles22. Using two rounds of MAKER 
followed by manual annotation to separate genes and alleles, we 
annotated 35,525 genes with alleles defined, including 4,289 (12.7%) 
genes with four alleles, 9,792 (27.6%) with three, 14,797 (41.7%) 
with two, and 6,647 (18.7%) with one. The total number of alleles 
was 82,773, with an average 2.3 alleles per gene. In unanchored 
sequences, 3,130 gene/alleles were annotated. We annotated 1,256 
tandemly duplicated genes and 3,375 dispersedly duplicated para-
logs (Table 1). The cytochrome P450 gene families illustrated the 
importance of annotating alleles in polyploid genomes, with a total 
of 1,465 manually annotated alleles in 387 genes (Supplementary 
Fig. 5). Without allele-specific annotation, the number of P450 
genes in this genome would be 1,465, not 387.

Among the predicted gene models, 90.0% could be found in the 
sorghum genome23 and 80% in collinear positions. Comparison 
with rice, sorghum, maize and Arabidopsis (Supplementary Fig. 6) 
showed that among 21,661 gene families, 1,278 (6%) were unique to 
S. spontaneum. Gene Ontology (GO) enrichment analysis showed 
that these S. spontaneum-specific genes were enriched in a list of GO 
categories, including response to wounding/external stimulus, ser-
ine-type endopeptidase/peptidase inhibitor activity and ribosomal 
subunit (both false discovery rate (FDR) and P <​ 0.01, Fisher’s exact 
test; Supplementary Table 13).

AP85-441 contains 1,842 Mbp of repetitive sequences, account-
ing for 58.65% of the assembled genome (Supplementary Table 14). 
Long terminal repeat (LTR) retrotransposons account for 45.62% 
of the genome, including 14.19% Ty1/copia and 26.04% Ty3/gypsy. 
Kimura distances analysis indicated a more recent LTR burst 
(Supplementary Fig. 7), including Ty1/copia and Ty3/gypsy super-
families that occurred between 0.72 and 2.9 million years ago.

Basic chromosome number reduction. The AP85-441 genome 
assembly showed chromosome reduction from 10 to 8 in  
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S. spontaneum to involve a paleo-duplicated pair of chromosomes 
that have experienced frequent recombinations. Alignment to sor-
ghum showed chromosome fissions in ancestral homologs of sor-
ghum chromosomes 5 and 8, paleo-duplicated chromosome pairs 
A5 and A11 in grasses (Fig. 2). The ancestor of SbChr05 (A12) 
split into two major segments, C5S (A12S) and C5L (A12L)24, 

that translocated into ancestors of SbChr06 (A2) and SbChr07 
(A5), respectively (Fig. 2c, event 1). The ancestor of SbChr08 
(A11) split into two major segments, C8S (A11S) and C8L (A11L), 
and translocated into ancestors of SbChr09 (A6) and SbChr02 
(A7 +​ A9), respectively. The short fragments that appear to be 
homologous between SbChr08 and SsChr5 and between SbChr05 
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Fig. 1 | Alignment of S. spontaneum AP85-441 chromosomes with sorghum chromosomes. A set of 4 homologous chromosomes aligned to a single 
sorghum chromosome. The reduction of basic chromosomes from 10 to 8 in S. spontaneum is caused by chromosome fissions followed by translocations 
of two ancestral chromosomes homologous to sorghum chromosomes 5 and 8. Inset: sorghum stratum SSA, which is mirrored in the alignment of SsChr5 
to SbChr08 and SsChr7 to SbChr05 at the tip of the short arm. Inset reproduced from ref. 25, http://www.plantcell.org, Copyright American Society of Plant 
Biologists. Mya, million years ago.

Table 1 | Allele annotation in the AP85-441 genome

Total no. of 
genes

No. of genes 
with 4 alleles

No. of genes 
with 3 alleles

No. of genes 
with 2 alleles

No. of genes 
with 1 allele

No. of dispersely 
duplicated genes

No. of tandem 
duplicated genes

Chr1 6,677 682 1,663 2,903 1,429 654 211

Chr2 5,961 784 1,717 2,438 1,022 558 225

Chr3 5,097 525 1,419 2,158 995 443 180

Chr4 4,081 529 1,112 1,687 753 374 165

Chr5 4,325 476 1,077 1,852 920 391 145

Chr6 3,800 483 1,069 1,556 692 365 132

Chr7 4,013 516 1,135 1,643 719 427 139

Chr8 1,571 294 600 560 117 163 59

Gene with annotated alleles 35,525 4,289 9,792 14,797 6,647 – –

Duplicated genes 4,631 – – – – 3,375 1,256

Unanchored genes/alleles 3,130 – – – – – –
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and SsChr7 are remains of homeologous genes in sorghum stra-
tum SSA formed 13.4 million years ago, well before sorghum and 
Saccharum diverged25. Strikingly, even the smaller SSA region in S5 

and the larger SSA region in S8 were conserved in the rearranged 
AP85-441 genome, reflected in the sparse alignment of SsChr5 to 
SbChr08 and the dense alignment of SsChr7 to SbChr05 at the tip 
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S. spontaneum. Chromosomes are represented with color codes to illuminate the evolution of segments from a common ancestor with 5 chromosomes. 
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of the short arm (Fig. 1), validating the high quality and accuracy 
of the AP85-441 genome assembly.

Polyploidization in S. spontaneum. We assessed whether the two 
rounds of whole-genome duplication (WGD) affecting sugarcane 
were allopolyploidization followed by autopolyploidization, as 
proposed26, or just two rounds of autopolyploidization. Although 
the sequenced genome is haploid, each gamete contains four sets 
of homologous or hom(e)ologous chromosomes, representing 
two WGDs (that is, from one to two to four). Comparison among 
hom(e)ologous haplotypes A, B, C and D revealed 7.7 million SNPs, 
1.03 million short indels and 3,637 structural variations (SVs), 
accounting for 11.2 Mbp of sequence and indicating heterozygos-
ity of 0.98% in the S. spontaneum AP85-441 genome (Fig. 3 and 
Supplementary Table 15). To exploit the fact that paralogs are often 
located on all four of a set of hom(e)ologous chromosomes, we 
developed a framework to carry out a more sensitive study of gene 
pair similarities (Supplementary Note). However, no clear partition 
reflecting two events could be inferred, with each of three comple-
mentary approaches suggesting random association among the four 
members of most homologous series.

It is clear, however, from comparisons of chromosomal rear-
rangements that there were two discrete WGDs, rather than a single 
event. Two fissions in ancestral homologs of sorghum chromosomes 
SbChr05 and SbChr08 that resulted in translocations to a set of two 
chromosomes each occurred before the two rounds of WGDs in 
Saccharum and after the divergence of Saccharum and Miscanthus 
(Fig. 2c). However, inversions in ancestral SbChr08S and SbChr08L 
in two pairs, SsChr2AB and SsChr7AB, indicate that these occurred 
after the first WGD but before the second (Fig. 2c, event 2). Among 
three regions showing collapsing of homologous sequences (upper 
region of SsChr1C, middle region of SsChr3D and upper region 
of SsChr8C), SsChr3B and SsChr8A have about 2×​ greater depth 
of Illumina short reads, suggesting that they are the collapsed 
homologs. The SsChr1C region showed equal distribution among 
three homologs, indicating a deletion in SsChr1C (Supplementary  
Table 16 and Supplementary Fig. 8).

Two inversions involving single chromosomes, ancestral 
SbChr05L (A12L) (homologous chromosome C of SsChr6) (Fig. 2c,  
event 3) and the bottom of SsChr5C (Fig. 2c, event 3), presumably 
occurred after the two rounds of WGD. Chromosome reduction 
in Miscanthus was caused by fusion of one set of chromosomes 
homologous to SbChr04 and SbChr0727. Inversions involving all 
four homologous chromosomes between SsChr4ABCD appear to 
have occurred before the two rounds of WGD, but it is actually an 
inversion that occurred in SbChr04 after Saccharum and Sorghum 
diverged from a common ancestor (Fig. 2c, event 5). These analyses 
indicate that the two rounds of WGD are autopolyploidization and 
that they occurred with a brief time in between.

Allelic expression dominance. The homologous genome expres-
sion levels of the four homologous genomes were similar in exam-
ined tissues (Supplementary Fig. 9), indicating no significant global 
homologous genome dominance in S. spontaneum. To mitigate dif-
ferential gene content among the homologous genomes, we further 
extracted 4,289 sets of genes with four alleles in high collinearity 
from AP85-441 (Supplementary Fig. 10), but overall gene expres-
sion level from each haplotype was similar for the four homologous 
genomes (Supplementary Fig. 9). These results are not surpris-
ing—even recent allopolyploids such as Brassica napus28, Gossypium 
hirsutum29, Triticum aestivum30 and Brassica juncea31 displayed no 
homologous chromosome dominance. S. spontaneum is a recent 
autopolyploid, and homologous genomes are fluid and changing 
after each meiosis.

For breeding polyploid crops such as sugarcane, the segrega-
tion of alleles with different expression levels may contribute to 
the segregation of traits in a breeding population. To simplify the 
analysis of the allelic expression, we sorted the expression levels of 
four alleles for 4,289 genes in descending order from I to IV. Three 
allele pairs (I/II, II/III and III/IV) were compared for analyzing the 
differentially expressed alleles (Supplementary Figs. 11 and 12). We 
defined the pairs with less than twofold difference in expression 
within a pair as neutral and others as non-neutral. Of 4,289 genes, 
on average, 37.6% displayed neutral expression and 62.4% displayed 
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non-neutral expression, suggesting that the expression of alleles 
varied. We further analyzed the variations in gene number among 
tissues; the numbers of both neutral and non-neutral genes were 
similar among the examined tissues. However, the genes of these 
two expressional patterns varied among examined tissues. On aver-
age, 36.3% of the neutral and 56.4% of the non-neutral genes were 
conserved across all the examined tissues (Supplementary Fig. 13).

Nicotinamide adenine dinucleotide phosphate-malic enzyme-
type C4 pathway. The C4 photosynthesis pathway was discovered 
in sugarcane32,33. We identified 24 genes for 7 key enzymes related 
to the nicotinamide adenine dinucleotide phosphate-malic enzyme 
(NADP-ME) C4 pathway (Supplementary Fig. 14). Increased expres-
sion of core C4 enzymes played a major role in the evolution of C4 
photosynthesis34. Based on gene expression and phylogenetic analy-
sis, 8 genes—SsCA1, SsCA2, SsPEPC1, SsPEPC-k1, SsNADP-MDH2, 
SsNADP-ME2, SsPPDK1 and SsPPDK-RP2—were identified as 
C4-type genes (Supplementary Table 17). A tandem duplication of 
SsNADP-ME2, SsNADP-ME1, also displayed a C4 expression profile 
similar to that of SsNADP-ME2. But the ortholog of SsNADP-ME1 in 
maize, ZmNADP-ME (GRMZM2G122479), displayed non-C4-type 
expression35, suggesting that neofunctionalization of SsNADP-ME1 
for C4 in sugarcane occurred after the divergence of maize and tribe 
Andropogoneae.

Sugar transporters. Sucrose transporters (SUTs) are hypothesized 
to load sucrose into the phloem of leaf minor veins and also func-
tion to retrieve sucrose from the apoplasm during transport36–38. In 
the step prior to phloem loading, SWEETs (sugars will eventually 
be exported transporters) are potentially responsible for sucrose 
efflux into the cell wall space from phloem parenchyma cells and 
the bundle sheath39,40. SWEETs play various important roles in mul-
tiple physiological processes41. In sugarcane and sweet sorghum, the 
stems are the principal sink tissues that store very high concentra-
tions of sugars within the parenchyma cells42–44. Tonoplast sugar 
transporters (TSTs) have been characterized as sucrose transporters  

highly associated with vacuolar sucrose accumulation from sugar 
beet taproot45, sugarcane46 and sweet sorghum stems47 and water-
melon fruit48. Whereas there are 3 TST genes in the sorghum 
genome47, the family has expanded in the S. spontaneum genome, 
which has 4 genes consisting of 13 homologs. Hence, it is reasonable 
to hypothesize that TSTs are the most promising players to seques-
ter sucrose into the vacuoles of the sugarcane stem46,47,49.

In the S. spontaneum genome, we identified 123 sugar transport-
ers from 9 subfamilies, including 4 in the TST family, 4 in the vacu-
olar glucose transporter (VGT) family, 3 in the plastidic glucose 
transporter (pGlcT) family, 4 in the inositol transporters (INT) fam-
ily, 31 in the polyol transporter (PLT) family, 14 in the early response 
to dehydration 6-like (SFP) family, 6 in the SUT family, 22 in the 
SWEET family, and 35 in the sugar transporters family or hexose 
transporter family (STP) (Supplementary Table 18). Phylogenetic 
analysis of those sugar transporters showed gene family expansion 
in the STP and PLT families compared with sorghum (22 in STP 
and 17 in PLT), rice (21 in STP and 11 in PLT) and Arabidopsis (14 
in STP and 9 in PLT) (Supplementary Fig. 15). Tandem duplication 
analysis indicated that 19 and 23 genes of STP and PLT, respectively, 
could be assigned to tandem duplication, compared with 11 and 9 
genes in sorghum. The cause of STP and PLT family expansions in 
S. spontaneum is tandem duplication.

Disease resistance genes. S. spontaneum contributed disease resis-
tance genes to modern sugarcane hybrid cultivars. We identified 
361 sequences putatively encoding nucleotide-binding site (NBS) 
proteins, including 22 N-type, 169 NL-type, 68 CN-type and 102 
CNL-type. The number of NBS-encoding genes is larger than that 
in sorghum50, owing to the species-specific tandem duplication in  
S. spontaneum. Surprisingly, 80% of the NBS-encoding genes located 
in the four rearrangement chromosomes (SsChr02, SsChr05, 
SsChr06 and SsChr07) and 51% of those were in the rearranged 
regions, including SsChr5 (Sb05S) 57.6–89.1 Mbp, SsChr6 (Sb05L) 
54.6–90.6 Mbp, SsChr7 (Sb08S) 62.0–83.3 Mbp, SsChr2 (Sb08L) 
98.5–125.9 Mbp (Supplementary Table 19). Resistance genes are 
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seven times more likely to locate in the four rearranged regions than 
in other chromosomes or regions (P <​ 2.2 ×​ 1016, Fisher’s exact test; 
Supplementary Table 20).

S. spontaneum fraction in hybrid sugarcane cultivars. Modern 
sugarcane cultivars are the product of complex and repeated hybrid-
ization between S. officinarum and S. spontaneum, resulting in com-
plex hybrids with chromosome numbers and morphologies that 
differ from those of their progenitors. Previous studies estimated 
that the S. spontaneum genome contributed approximately 10–20% 
of the modern hybrid sugarcane genome. In the modern hybrid 
sugarcane SP80-3280, approximately 12.25% of sequences are con-
tributed by S. spontaneum. We mapped the sequences back to the 
AP85-441 genome, and they were randomly and evenly distributed, 
not constituting a set or sets of chromosomes as expected (Fig. 4). 
Analysis of the integrated S. spontaneum fraction in 15 resequenced 
hybrid genomes also yielded random distribution throughout the 
genome (Supplementary Fig. 16).

Origin and genetic diversity of S. spontaneum. Most of the 
genetic diversity found within S. spontaneum has not been intro-
gressed into commercial sugarcane, and in principle, this germ-
plasm represents a rich source of desirable agronomic traits 
related to stress tolerance and biomass accumulation51. S. sponta-
neum has a broad natural range extending throughout Asia, the 
Indian subcontinent, the Mediterranean and Africa52, and natural  

populations display a wide range of phenotypic, genetic and 
ploidy-level diversity.

In practice, however, nucleotide diversity (π) across S. spon-
taneum was estimated to be 0.00021 ±​ 0.000002 (Supplementary 
Tables 21 and 22 and Supplementary Fig. 17), much lower than 
that in other clonally propagated crops such as potato53, cassava54, 
grape55 and citrus56. We resequenced 64 diverse S. spontaneum 
accessions from the world germplasm collection, identifying 4.48 
million high-confidence variants that included 3,961,408 SNPs, 
201,854 insertions and 291,346 deletions, averaging 1.52 variants 
per kb. We identified 671,265 variants (15%) in genic regions, 
including 41,960 synonymous, 101,826 nonsynonymous and 
491,493 intronic variants.

Both principal component analysis (PCA) and admixture-based 
analyses clustered the 64 S. spontaneum accessions into three dis-
tinct groups (Fig. 5a,c; for other K-values, see Supplementary Fig. 
18a,b) that were also supported by phylogenetic relationships 
among the 64 accessions inferred by bootstrapping and geographic 
origins (Supplementary Table 23), with group 1 originating from 
China, the Philippines, Indonesia and Papua New Guinea and 
groups 2 and 3 originating from India, Pakistan and Iran. The 
regions of Pan-Malaysia might be the ancient hybrid zones among 
three groups. Ploidy varies widely within the three groups, from 
6x to 16x. By mapping the ploidy levels on the bootstrapped tree  
(Fig. 5b), the topology shows that the accessions of different ploidy lev-
els (from hexaploid to hexadecaploid) diverged independently from  
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ancestors in three groups, suggesting that the fluid ploidy levels may 
have independently evolved from ancestral progenitors.

Regions of S. spontaneum with larger-scale chromosomal rear-
rangements compared with sorghum have higher genetic diversity 
(higher π value) than non-rearranged regions and may have under-
gone much stronger balancing selection (Supplementary Table 22 
and Supplementary Fig. 19). Although several individual chromo-
somes do not show significant differences, comparisons averaging 
values on all chromosomes show nucleotide diversity (π) in rear-
ranged regions (0.00025 ±​ 0.00003) to be much higher than in non-
rearranged regions (0.00021 ±​ 0.00001, P =​ 0.000234). The Tajima’s 
D in rearranged regions (−​0.659 ±​ 0.052) is much higher than in 
non-rearranged regions (−​0.720 ±​ 0.011, P =​ 0.005013). SNP density 
is also higher in rearranged regions (360.27 ±​ 48.41) than in non-
rearranged regions (297.46 ±​ 12.65, P =​ 0.001798). In addition, the 
GO enrichment analyses showed that the non-rearranged regions 
are enriched in GOs related to basic life cycles, primarily in photo-
synthesis, respiration and ATP synthesis (both FDR and P <​ 0.05, 
Fisher’s exact test; Supplementary Table 23), whereas the rearranged 
regions were enriched in many GOs related to secondary life pro-
cesses, whole celluar process and intracellular anabolic and catabolic 
processes, transmembrane transport and ion binding (both FDR 
and P <​ 0.05, Fisher’s exact test; Supplementary Table 24).

An intriguing question is whether genomic rearranged regions 
might have had a role in adaptation to different habitats. The rear-
ranged regions in S. spontaneum with high levels of genomic diver-
sity (π value) might result from a preponderance of adaptive genes 
related to habitat or stress adaptation, such as responses to various 
abiotic stresses (drought, salinity, alkaline, metal ions and so on), 
which are controlled by genes of whole celluar process and intra-
cellular anabolic and catabolic processes, transmembrane transport 
and ion binding, as detected in these regions. Conversely, it is also 
meaningful that the non-rearranged regions mainly controlling 
basic life cycles maintain a lower level of genomic diversity. The 
rearranged regions have undergone stronger balancing selection 
after the polyploidization events. Adding further support to this 
notion is that 80% of the NBS-encoding genes are located on the 
four rearrangement chromosomes.

Discussion
The identification of 80% of disease resistance genes on rearranged 
chromosomes suggests that reduction of basic chromosome number 
might have contributed to the retention of disease-resistance genes. 
Following chromosome fissions and translocations in a diploid 
ancestor, translocated fragments may have undergone little recom-
bination. Following WGD, additional chromosomal rearrange-
ments in these translocated regions may have further suppressed 
recombination (Fig. 1). Population genomic analyses detected 
balancing selection in these rearranged regions, a mechanism to 
maintain genetic diversity. It is likely an unintended consequence 
that these rearranged chromosome arms are enriched with NBS-
encoding genes, resulting in more disease-resistance genes being 
retained in S. spontaneum, which leads to higher resistance to dis-
ease and abiotic stresses in S. spontaneum than in other Saccharum 
species and makes S. spontaneum the source of disease and stress 
tolerance in sugarcane breeding program.

Integration of S. spontaneum chromosome segments into mod-
ern sugarcane hybrid cultivars by three to four generations of 
backcrossing at random would result in about one set of mono-
ploid S. spontaneum chromosomes. The S. spontaneum fraction 
of the sugarcane hybrid cultivar SP80-3280 and of 15 resequenced 
hybrid genomes each appear randomly distributed in the reference 
AP85-441 genome, indicating random recombination of homolo-
gous chromosomes in different accessions that have undergone 
many rounds of meiosis after their separation. This is indirect evi-
dence that S. spontaneum is autopolyploid, and it reinforces the  

importance of allele-specific annotation for mining effective alleles 
of resistance genes in hybrid cultivars.

Defining alleles in an autopolyploid genome clarifies gene 
or gene family analysis, as demonstrated in P450 and other gene 
families. This reference genome offers substantial new knowledge 
and unprecedented genomic resources for sugarcane breeders and 
researchers to mine disease resistance and other alleles in rear-
ranged chromosomes from historic hybrid cultivars, and to track 
them in breeding populations to shorten the 13-year breeding cycle.

URLs. FGENESH online version, http://www.softberry.com/berry.
phtml?topic=​fgenesh&group=​help&subgroup=​gfind; FigTree, 
http://tree.bio.ed.ac.uk/software/figtree/; National Center for 
Biotechnology Information non-redundant (NCBI NR) database 
for Oryza sativa, ftp://ftp.ncbi.nih.gov/blast/db; RepeatModeler, 
http://www.repeatmasker.org/RepeatModeler/.
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Methods
Genome sequencing. Illumina short reads sequencing. DNA was extracted from 
leaf tissue of a single soil-grown plant using the Qiagen DNeasy Plant Mini Kit and 
applied to 280-bp and 500-bp paired-end library construction using the NEBNext 
Ultra DNA Library Prep Kit for Illumina sequencing. Sequencing was performed 
using the Illumina HiSeq 2500 platform.

Construction of BAC libraries and sequencing. Nuclei were isolated from the young 
leaf tissues of AP85-441 following the method described by Ming et al.57. The high-
molecular-weight DNA embedded in agarose was partially digested using HindIII. 
Fractions at approximately 100 kb were recovered and cloned into the pSMART 
BAC vector (Lucigen). A total of 38,400 BAC clones were constructed and selected 
for sequencing; 48 BAC clones were pooled together, and DNA libraries were 
prepared with the PhasePrep BAC DNA Kit (Sigma) following the manufacturer’s 
protocols. BAC DNA libraries were sequenced using the Illumina HiSeq 2500 with 
a 250-bp paired-end sequencing strategy.

PacBio library construction and sequencing. More than 5 µ​g of sheared and 
concentrated DNA was applied to size selection by the BluePippin system. 
Approximately 20-kb SMRTbell libraries were prepared according to the released 
protocol from PacBio. A total of 176 Single-Molecule, Real-Time (SMRT) cells 
were run on the PacBio RS II system with P6-C4 chemistry.

Hi-C library construction and sequencing. Four Hi-C libraries were created from 
tender leaves of AP85-441 at BioMarker Technologies Company as described 
previously58. Briefly, the leaves were fixed with formaldehyde and lysed, and then 
the cross-linked DNA was digested with HindIII overnight. Sticky ends were 
biotinylated and proximity-ligated to form chimeric junctions that were enriched 
for and then physically sheared to a size of 500–700 bp. Chimeric fragments 
representing the original cross-linked long-distance physical interactions were then 
processed into paired-end sequencing libraries, and 1,001 million 150-bp paired-
end reads were produced on the Illumina HiSeq X Ten platform.

Genome assembly overview. The sugarcane AP85-441 contig-level assembly 
incorporated sequencing data from a mixture of sequencing technologies 
(Supplementary Fig. 1), including BAC pools sequenced with Illumina HiSeq 2500 
and whole-genome shotgun sequencing with PacBio RS II as well as Hi-C reads, 
followed by Illumina short reads polishing. Each BAC pool was independently 
assembled using ALLPATHS-LG8, SPAdes9 and SOAPdenovo210, and best 
results were retained. For PacBio assembly, Canu v1.511 was used, as it is capable 
of avoiding collapsed repetitive regions and haplotypes. Self-correction was 
performed with parameter corOutCoverage =​ 100, which allowed us to correct all 
of the input PacBio reads. The corrected reads, along with BAC-assembled contigs, 
were imported to the assembly step. Chromosomal assembly was constructed 
based on proximity-guided assembly using our newly developed program, 
ALLHIC, which is designed for polyploid genome scaffolding (see Supplementary 
Note for details).

Genome annotation. Repeat prediction. We first customized a de novo repeat 
library of the genome using RepeatModeler (see URLs), which can automatically 
execute two de novo repeat finding programs, including RECON (version 1.08)59 
and RepeatScout (version 1.0.5)60. The consensus transposable element (TE) 
sequences generated above were imported to RepeatMasker (version 4.05)61 to 
identify and cluster repetitive elements. Unknown TEs were further classified 
using TEclass (version 2.1.3)62. To identify tandem repeats within the genome, the 
Tandem Repeat Finder (TRF) package (version 4.07)63 was used with the modified 
parameters of ‘1 1 2 80 5 200 2,000 –d –h’ to find high-order repeats. Telomeres and 
centromeres were identified based on the .dat output files above. Repeat sequences 
with more than ten monomers ‘AAACCT’ were identified as telomeres. For 
centromere identification, we used a similar method described in the Oropetium 
thomaeum genome64. The largest repeat arrays were identified and clustered as 
centromeres. To further investigate LTRs, we applied the LTR_retriever pipeline65, 
which can integrate results from public programs such as LTR_FINDER66 and 
LTRharvest67 and efficiently remove false positives from the initial predictions. 
The predicted LTRs were further classified into intact and non-intact LTRs, and 
the insertion time was estimated as T =​ K/2μ (K is the divergence rate, and μ is the 
neutral mutation rate; the default is 1.38 ×​ 10−8 in LTR_retriever) using the scripts 
implemented in the LTR_retriever package65.

Gene annotation. To get high-quality annotation of protein-coding genes, we 
carried out two rounds of MAKER running, following extensive and careful 
manual inspections in JBrowse68.

In the first round of MAKER running, ten selected RNA sequencing (RNA-
seq) samples were imported into Trinity de novo assembly and genome-guided 
assembly pipelines with default parameters69. RSEM was used to calculate 
transcript abundance70. Transcripts with FPKM (fragments per kilobase of exon 
per million fragments mapped) <​ 1 and iso-percentage <​ 3% were removed from 
further analysis. The filtered transcripts were imported to the PASA program for 
construction of comprehensive transcripts, as PASA is able to take advantage of 

the high sensitivity of reference-based assembly while leveraging the ability of 
de novo assembly to detect novel transcripts71. The PASA-assembled transcripts 
described above were used for training. The nearly ‘full-length’ transcripts were 
evaluated by comparing with the UniProt plant protein database (last accessed 
on 8 December 2016), and proteins that were covered at least 95% were retained 
as candidates. Then ab initio gene predictors, including SNAP72, GENEMARK73 
and AUGUSTUS74, were each trained with those selected proteins. After that, the 
MAKER pipeline was used to integrate multiple tiers of coding evidence, including 
ab initio gene prediction, transcript evidence and protein evidence and generate a 
comprehensive set of protein-coding genes.

In the second round of MAKER running, the predicted gene models with 
AED score equal to 0 were extracted for retraining using SNAP72, GENEMARK73 
and AUGUSTUS74. In addition, the RNA-seq reads were mapped to the AP85-441 
genome using HiSAT275 version 2.10 and reassembled using StringTie76 version 
1.3.4, which is a reference-based RNA assembler. Meanwhile, published full-length 
transcripts based on IsoSeq in sugarcane were also recruited for annotation77. The 
four haplotypes (A, B, C and D) were split into four sub-genomes, each containing 
eight pseudo-molecules.

Gene structures were visualized in JBrowse68 along with RNA-seq-assembled 
transcripts and homologs from the sorghum, maize and rice genomes. We 
compared the two rounds of MAKER annotation and selected the better ones 
if their structures were better supported by homologous proteins or RNA-seq-
assembled transcripts. Genes in the first round of annotation were kept if their 
structures did not improve significantly in the second round.

Extensive manual inspection of the annotation identified that 28,306 gene 
models had a significant difference in protein length or sequence similarity 
compared with other reported protein sequences in the NCBI NR database. 
The corresponding genomic DNA sequences of these genes were extracted for 
further careful annotation using the online version of FGENESH (see URLs) with 
pretrained parameters for sorghum genes. Genes with significant improvement 
were replaced with the FGENESH annotation.

BUSCO20 version 3 was used for evaluation of annotation completeness. Out of 
1,440 conserved genes, 1,397 (97.1%) were re-annotated in the AP85-441 genome, 
among which 1,101 (76.5%) were complete and duplicated BUSCO genes.

Allelic variation analysis. Construction of a monoploid genome. To compare 
the allelic variations among the four haplotypes, we first generated a monoploid 
genome. The concept of the monoploid genome is aimed at retaining consensus 
sequences among four haplotypes and covering as many genetic materials as 
possible. The longest pseudo-molecule was used as reference for each set of 
haplotypes, and the other three haplotypes were mapped against the reference 
for SNP/indel and SV calling using the nucmer78 program. Mapping results were 
filtered, and only the best hits were retained. The program show-snps, implemented 
in the MUMmer package78, was used to identify SNPs and indels with parameters 
–Clr, which means only SNPs/indels from ambiguous mapping were reported. 
Consensus sequences were extracted using a homemade PERL script. Insertions 
larger than 50 bp were identified on Assemblytics79, a Web-based SV analytics tool, 
and further inserted into the reference genome. Finally, a monoploid genome, 
containing eight representative pseudomolecules and 785 Mbp of sequence, was 
generated for further analysis (Fig. 3).

Identification of alleles. Identification of alleles in the AP85-441 genome was 
based on two strategies: (1) synteny-based and (2) coordinate-based approaches. 
Interhaplotype syntenic blocks were identified by MCScanX80 and organized into 
a four-column table containing allele A, B, C or D. In addition, genes that were not 
shown in that table were mapped to the monoploid genome using GMAP81, and 
those with at least 50% overlaps on coordinates were considered as potential alleles. 
Sequence similarities were checked among alleles on the basis of reciprocal blast, 
and genes without significant similarities to any other allele were removed from 
the table.

Analysis of allelic variations. We use a reference-based strategy to identify SNPs/
indels and SVs. Similar to the approach described in the previous section, the 
nucmer78 program was used to map haplotypes A, B, C and D to the monoploid 
genome and SNPs were extracted from ambiguous best mapping. Short indels 
(1–10 bp) and large structural variations were recalled by Assemblytics79 on the 
basis of the alignments above.

Identification of the sequences in hybrid sugarcane that originate from  
S. spontaneum. The SP80-3280 genome was first masked using the customized TE 
library and then split into 1-kb fragments. Each of the fragments was blast against 
the AP85-441 and LA-purple (unpublished) masked genomes, respectively, and the 
mapping score was calculated for each blast hit using the following formula:

=S N I*

where S indicates mapping score, N indicates the number of matched bases and I 
indicates identity in each blast hit.

Fragments were further classified as sequences from AP85-441 and sequences 
from LA-purple if they had a best mapping score in the corresponding category. 
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Sequences were classified as fragments from both if they had similar mapping 
scores (<​5% difference) in the LA-purple and AP85-441 genomes.

Allelic expression dominance. Tissues including leaves, stems and roots were 
collected from mature plants, and RNA-seq analysis in this part was based on these 
three samples. RNA-seq reads were trimmed by Trimmomatic and then mapped 
to the AP85-441 genome by HiSAT275. FPKM was calculated on the basis of 
unique mapping reads using the StringTie package76. To analyze allelic expression 
dominance, we extracted 4,289 genes with full of four alleles from the AP85-441 
annotation files. To simplify the analysis of the allelic expression, the expression 
levels of the genes were sorted in descending order from I to IV. Three allele pairs 
(I/II, II/III and III/IV) were compared to analyze the differentially expressed 
alleles. Allele pairs with less than twofold difference in expression were defined as a 
neutral pair and all others as non-neutral.

Resequencing and population analysis. Reads mapping and variants calling. 
The raw pair-end reads of 64 S. spontaneum accessions were trimmed to remove 
the adaptors and low-quality bases using Trimmomatic82 after quality control by 
FastQC83. The reads were filtered with a sliding window of size 7, with average 
Phred score scale of 20 within the window. The trimmed reads were mapped to 
the S. spontaneum genome using Bowtie284 with default parameters. The mapped 
reads were sorted, and duplicated reads were removed using SAMtools85. We 
estimated the rate of uniquely mapped reads outputted from both BWA86 and 
Bowtie284. Bowtie2 generated ten times as many uniquely mapped reads as BWA 
did (Supplementary Fig. 21).

The Realigner Target Creator and Indel Realigner programs from the Genome 
Analysis Toolkit (GATK) package87 were used for global realignment of reads 
around indels from the sorted BAM files. The HaplotypeCaller was used to 
estimate the SNPs and indels for putative diploids using the default parameters. 
The HaplotypeCaller outputted 42,585,337 unfiltered variants (SNPs and indels). 
The distribution of calling depths (DP) of each raw variant was estimated as a 
criterion for variants filtering. Low depths and repetitive variants were removed 
from the raw VCF file if they had DP <​ 2 or DP >​ 45, minQ <​ 30. Variants with 
more than 15% missing data were removed. These filtering strategies reduced the 
raw unfiltered set of 42.59 million variants (SNPs and Indels) to the working set 
of 4.48 million (4,476,608) variants. SnpEff (v3.6c)88 was used to assign variants 
effects on the basis of gene models from S. spontaneum genome annotation. The 
variants sites were annotated as the SNPs and Indels, as well as intergenic and 
genic regions (including the synonymous, nonsynonymous, intronic, upstream and 
downstream variants).

Genome-wide genetic diversity estimation. Population genetic statistics of SNP 
density, π​ and Tajima’s D were calculated directly from the filtered VCF file in 
1,000-kb window and 500-kb step for π​, and non-overlapping intervals for SNPs 
density and Tajima’s D in VCFtools89. The high confidence 4,476,608 variant set 
was used for statistical estimations.

PCA. PCA was performed using the GCTA software on the filtered 4,476,608 
variants. The input Plink binary files are transformed from the filtered VCFs file 
using VCFtools89 and PLINK90. The top three principal components were used for 
assigning the 64 accessions and downstream population structure analysis.

Phylogeny. Bi-allelic and polymorphic SNPs (3,969,408) were used for 
reconstructing the phylogenetic relationships among 64 accessions. Before 
tree construction, we filtered and pruned the SNPs with MAF (minor allele 
frequency) <​ 0.2, missing rate >​ 0.15, and LD (linkage disequilibrium) 
threshold =​ 0.2. Finally, a total of 37,617 SNPs were selected for the constructed 
tree using SNPhylo software. The multiple consensus sequences were aligned 
using MUSCLE91. Maximum likelihood trees were constructed using the 
maximum likelihood method by running DNAML programs in the PHYLIP 
package92. In addition, a bootstrapped tree was constructed by bootstrapping 
(bootstrap =​ 10,000) analysis using the PHANGORN package93. Figtree v.1.4 (see 
URLs) was used to visualize the trees.

Population genetic structure. Ancestral population stratification among 64 
accessions was inferred using Admixture software. The optimal ancestral 
population structure was estimated from the same variants set with STRUCTURE94 
using ancestral population sizes K =​ 1–20 and choosing the population with the 
smallest cross-validation error. The parameter standard errors were estimated 
using bootstrapping (bootstrap =​ 200) when doing the admixture analyses. 
DISTRUCT95 was used to plot the population stratification results for K =​ 1 
through K =​ 20 (Supplementary Fig. 18).

Differentiation of genomic diversity among four homologous haploid sets. The reads 
mapped to each of four homologous haploid sets (A, B, C and D) of the AP85-441 
genome were retrieved for each of 64 accessions using SAMtools85 and Bedtools96. 
The four sets of retrieved reads for each of 64 accessions were mapped separately 
to each of eight chromosomes in a consensus monoploid genome using Bowtie2 
with default parameters. The variants were called from a cohort of 256 BAM 

files generated from the previous step for each of the eight chromosomes. The 
HaplotypeCaller of GATK was used to estimate the SNPs and indels for putative 
diploids using the default parameters. The HaplotypeCaller outputted 17,531,765 
unfiltered variants (SNPs and indels). The distribution of calling depths (DP) 
of each raw variant was estimated as a criterion for variant filtering. Low depths 
and repetitive variants were removed from the raw VCF file if they had DP <​ 1 or 
DP >​ 5, minQ <​ 20. We allowed the variant sites with max-missing rate as 50%. 
These filtering strategies reduced the raw unfiltered set of variants (SNPs and 
indels) to the working set of 68,911 variants. These filtering strategies reduced 
the raw unfiltered set of variants (SNPs and indels) to the working set of 68,911 
variants. The working variant set was then used for estimating the population 
genetics statistics π​ among four homologous haploid sets.

Genomic diversity of genomic rearranged regions. To test whether genomic 
rearranged regions (RAR) have a genetic difference from non-rearranged regions 
(non-RAR), we compared the population genetic statistics π, SNP density, and 
Tajima’s D between rearranged and non-rearranged regions in each of four sets 
(A, B, C and D) of chromosomes 2, 5, 6 and 7. The genomic rearranged regions 
inferred by collinear dot plot and alleles phasing are shown Supplementary Table 
21. We used the T-test and Mann-Whitney U test with the one-tailed hypothesis 
to compare the differences of statistics (π, SNP density and Tajima’s D) between 
RAR and non-RAR. To find the difference in gene functions between RAR and 
non-RAR, we conducted GO enrichment analysis for the gene models in RAR and 
non-RAR. We first blastX the S. spontaneum gene models in the NCBI NR database 
of Oryza sativa (see URLs). Then, the functional annotation and GO enrichment 
analyses of gene models were conducted in Blast2Go v4.1 software97. We used 
gene models of RAR or non-RAR as tested gene sets and the whole gene models as 
reference. The significance of enrichment was valued using the Fisher’s exact test.

Genomic diversity among different polyploidy accessions. To test the effects of 
polyploidization on genetic diversity, we compared the population nucleotide 
diversity (π) among accessions with different ploidy levels. We used a 1,000-kb  
sliding window and a 500-kb step to calculate the values of each statistic. In 
addition, we divided the 64 accessions into four groups (ploidy 6, 8, 10 and 
13–16) depending on their ploidy level. The four groups were used to calculate 
the pairwise Weir and Cockerham’s FST between the two of them using VCFtools 
version 0.1.12b46 with a 1,000-kb sliding window and a 500-kb step.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genome assembly and gene annotation have been deposited in the NCBI 
database under accession number QVOL00000000, BioProject number 
PRJNA483885 and BioSample number SAMN09753102. The data can also be 
downloaded from the following link: http://www.life.illinois.edu/ming/downloads/
Spontaneum_genome/.
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